目录
基本初等函数的导数公式求导法则函数的和、差、积、商的求导法则复合函数的求导法则隐函数的求导法则反函数的求导法则参数方程的求导法则
高阶导数常用的高阶导数公式莱布尼茨公式
补充说明: 抽象函数使用洛必达法则最多可用到
基本初等函数的导数公式
(
1
)
(
C
)
′
=
0
(
3
)
(
sin
x
)
′
=
cos
x
(
5
)
(
tan
x
)
′
=
sec
2
x
(
sec
x
=
1
cos
x
)
(
7
)
(
sec
x
)
′
=
sec
x
tan
x
(
9
)
(
a
x
)
′
=
a
x
ln
a
(
11
)
(
log
a
x
)
′
=
1
x
ln
a
(
13
)
(
arcsin
x
)
′
=
1
1
−
x
2
(
15
)
(
arctan
x
)
′
=
1
1
+
x
2
(
17
)
[
ln
(
x
+
x
2
+
1
)
]
′
=
1
x
2
+
1
(
2
)
(
x
μ
)
′
=
μ
x
μ
−
1
(
4
)
(
cos
x
)
′
=
−
sin
x
(
6
)
(
cot
x
)
′
=
−
csc
2
x
(
csc
x
=
1
sin
x
)
(
8
)
(
csc
x
)
′
=
−
csc
x
cot
x
(
10
)
(
e
x
)
′
=
e
x
(
12
)
(
ln
x
)
′
=
1
x
,
(
ln
∣
x
∣
)
′
=
1
x
(
14
)
(
arccos
x
)
′
=
−
1
1
−
x
2
(
16
)
(
arccot
x
)
′
=
−
1
1
+
x
2
(
18
)
[
ln
(
x
+
x
2
−
1
)
]
′
=
1
x
2
−
1
\begin{align*} \begin{aligned} &(1) \ (C)'=0 \\ &(3) \ (\sin x)'=\cos x \\ &(5) \ (\tan x)'=\sec^2x \ (\sec x=\frac{1}{\cos x}) \\ &(7) \ (\sec x)'=\sec x \tan x \\ &(9) \ (a^x)'=a^x \ln a \\ &(11) \ (\log_a x)'=\frac{1}{x \ln a} \\ &(13) \ (\arcsin x)'=\frac{1} {\sqrt{1−x^2}} \\ &(15) \ (\arctan x)'=\frac{1}{1+x^2} \\ &(17) \ [\ln (x+\sqrt{x^2+1})]'=\frac{1}{\sqrt{x^2+1}} \\ \end{aligned} \quad \begin{aligned} &(2) \ (x^{\mu})'=\mu x^{\mu−1} \\ &(4) \ (\cos x)'=−\sin x \\ &(6) \ (\cot x)'=−\csc^2x \ (\csc x=\frac{1}{\sin x}) \\ &(8) \ (\csc x)'=−\csc x \cot x \\ &(10) \ (e^x)'=e^x \\ &(12) \ (\ln x)'=\frac{1}{x} ,\ (\ln |x|)'=\frac{1}{x}\\ &(14) \ (\arccos x)'=−\frac{1}{\sqrt{1−x^2}} \\ &(16) \ (\text{arccot} \, x)'=−\frac{1}{1+x^2} \\ &(18) \ [\ln (x+\sqrt{x^2-1})]'=\frac{1}{\sqrt{x^2-1}} \end{aligned} \end{align*}
(1) (C)′=0(3) (sinx)′=cosx(5) (tanx)′=sec2x (secx=cosx1)(7) (secx)′=secxtanx(9) (ax)′=axlna(11) (logax)′=xlna1(13) (arcsinx)′=1−x2
1(15) (arctanx)′=1+x21(17) [ln(x+x2+1
)]′=x2+1
1(2) (xμ)′=μxμ−1(4) (cosx)′=−sinx(6) (cotx)′=−csc2x (cscx=sinx1)(8) (cscx)′=−cscxcotx(10) (ex)′=ex(12) (lnx)′=x1, (ln∣x∣)′=x1(14) (arccosx)′=−1−x2
1(16) (arccotx)′=−1+x21(18) [ln(x+x2−1
)]′=x2−1
1
求导法则
函数的和、差、积、商的求导法则
设
u
=
u
(
x
)
,
v
=
v
(
x
)
u=u(x),v=v(x)
u=u(x),v=v(x)都可导,则 (1)
(
u
+
v
)
′
=
u
′
±
v
′
(u+v)'=u'±v'
(u+v)′=u′±v′ (2)
(
C
u
)
′
=
C
u
′
(
C
是常数
)
(Cu)'=Cu' \ (C 是常数)
(Cu)′=Cu′ (C是常数) (3)
(
u
v
)
′
=
u
′
v
+
u
v
′
(uv)'=u'v+uv'
(uv)′=u′v+uv′ (4)
(
u
v
)
′
=
u
′
v
−
u
v
′
v
2
(
v
≠
0
)
(uv)'=\displaystyle\frac{u'v−uv'}{v^2} \ (v≠0)
(uv)′=v2u′v−uv′ (v=0)
复合函数的求导法则
设
u
=
φ
(
x
)
u=\varphi(x)
u=φ(x)在
x
x
x处可导,
y
=
f
(
u
)
y=f(u)
y=f(u)在对应点处可导,则复合函数
y
=
f
[
φ
(
x
)
]
y=f[\varphi(x)]
y=f[φ(x)]在
x
x
x处的导数为
d
y
d
x
=
d
y
d
u
⋅
d
u
d
x
=
f
′
(
u
)
⋅
φ
′
(
x
)
\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}=f'(u) \cdot\varphi'(x)
dxdy=dudy⋅dxdu=f′(u)⋅φ′(x)
隐函数的求导法则
设
y
=
y
(
x
)
y=y(x)
y=y(x)是由方程
F
(
x
,
y
)
=
0
F(x,y)=0
F(x,y)=0所确定的可导函数,为求得
y
′
y'
y′,可在方程
F
(
x
,
y
)
=
0
F(x,y)=0
F(x,y)=0两边对
x
x
x求导,得到一个含有
y
′
y'
y′的方程,从中解出
y
′
y'
y′即可。 另有隐函数求导公式:
d
y
d
x
=
−
F
x
′
F
y
′
\frac{dy}{dx}=-\frac{F'_x}{F'_y}
dxdy=−Fy′Fx′
反函数的求导法则
若
y
=
f
(
x
)
y=f(x)
y=f(x)在某区间内单调可导,且
f
′
(
x
)
≠
0
f'(x)≠0
f′(x)=0,则其反函数
x
=
φ
(
y
)
x=\varphi(y)
x=φ(y)在对应区间内也可导,且
φ
′
(
y
)
=
1
f
′
(
x
)
或
d
x
d
y
=
1
d
y
d
x
\varphi'(y)=\frac{1}{f'(x)} \ 或\ \frac{dx}{dy}=\frac{1}{\displaystyle\frac{dy}{dx}}
φ′(y)=f′(x)1 或 dydx=dxdy1
参数方程的求导法则
高阶导数
常用的高阶导数公式
第4项即为——
莱布尼茨公式
不同于牛顿-莱布尼茨公式(微积分学),莱布尼茨公式用于对两个函数的乘积求取其高阶导数。 一般的,如果函数
u
=
u
(
x
)
u=u(x)
u=u(x)与函数
v
=
v
(
x
)
v=v(x)
v=v(x)在点
x
x
x处都具有
n
n
n阶导数,那么此时有
(
u
v
)
(
n
)
=
∑
k
=
0
n
C
n
k
u
(
k
)
v
(
n
−
k
)
(uv)^{(n)}=\sum^n_{k=0}C^k_nu^{(k)}v^{(n-k)}
(uv)(n)=k=0∑nCnku(k)v(n−k) 其中,
C
n
k
=
n
!
k
!
(
n
−
k
)
!
C^k_n=\displaystyle\frac{n!}{k!(n-k)!}
Cnk=k!(n−k)!n!为组合数,
u
(
0
)
=
u
u^{(0)}=u
u(0)=u,
v
(
0
)
=
v
v^{(0)}=v
v(0)=v.
个人笔记,如有错误,烦请指正,万分感谢